You are here
Home / Reacting Flows
MCEN-6001 (3) Reacting Flows
Provides an introduction to reacting flows and combustion. Covers chemical kinetics, including global and detailed mechanisms, and the variable density flow equations are derived. Relevant non-dimensional parameters and limiting behaviors are discussed. The Rankine-Hugoniot relations are presented and various aspects of diffusion, kinetically dominated, and balanced combustion are outlined. Flame structures are discussed, including laminar and turbulent flames, and the Burke-Schumann solution is outlined. The turbulent forms of the motion equations are derived, and the reactive scalar transport equation and mixture fraction variable are presented. The flamelet progress variable approach is outlined, including a comparison of steady and unsteady flamelet models. Specific topics in spray combustion, triple flames, solid-gas reactors, and detonations are discussed. Same as ASEN 6001. Requisites: Requires prerequisite course of MCEN 5021 (minimum grade C-). Restricted to College of Engineering and Applied Science graduate students or BS/MS Concurrent Degree Students only.